Com calcular la probabilitat a Excel

Aquest article explica com podeu calcular la probabilitat a Excel mitjançant la funció PROB amb diversos exemples.

La probabilitat és una mesura matemàtica que defineix les probabilitats probables que un esdeveniment (o conjunt d'esdeveniments) succeeixi en una situació. En altres paraules, és simplement la probabilitat que passi alguna cosa. La probabilitat d'un esdeveniment es mesura comparant el nombre d'esdeveniments favorables amb el nombre total de resultats possibles.

Per exemple, quan llencem una moneda, la probabilitat d'aconseguir un "cap" és la meitat (50%), així com la probabilitat d'aconseguir una "cua". Perquè el nombre total de resultats possibles és 2 (un cap o una cua). Suposem que el vostre informe meteorològic local diu que hi ha un 80% de possibilitats de pluja, llavors probablement plogui.

Hi ha nombroses aplicacions de probabilitat a la vida diària com els esports, la predicció del temps, les enquestes, els jocs de cartes, la predicció del sexe del nadó a l'úter, l'estàtica i molts més.

Calcular la probabilitat pot semblar un procés descoratjador, però MS Excel ofereix una fórmula integrada per calcular fàcilment la probabilitat mitjançant la funció PROB. Vegem com trobar probabilitats a Excel.

Calcula la probabilitat amb la funció PROB

Normalment, la probabilitat es calcula dividint el nombre d'esdeveniments favorables pel nombre total de resultats possibles. A Excel, podeu utilitzar la funció PROB per mesurar la probabilitat d'un esdeveniment o rang d'esdeveniments.

La funció PROB és una de les funcions estadístiques d'Excel que calcula la probabilitat que els valors d'un rang estiguin entre els límits especificats. La sintaxi de la funció PROB és la següent:

= PROB(x_range, prob_range, [límit_inferior], [límit_superior])

on,

  • rang_x: Aquest és el rang de valors numèrics que mostra diferents esdeveniments. Els valors x tenen probabilitats associades.
  • rang_prob: Aquest és l'interval de probabilitats per a cada valor corresponent a la matriu x_range i els valors d'aquest interval han de sumar 1 (si estan en percentatges han de sumar fins al 100%).
  • límit_inferior (opcional): És el valor límit inferior d'un esdeveniment del qual es desitja la probabilitat.
  • límit_superior (opcional): És el valor límit superior d'un esdeveniment del qual es vol la probabilitat. Si s'ignora aquest argument, la funció retorna la probabilitat associada al valor de límit_inferior.

Probabilitat Exemple 1

Aprenem a utilitzar la funció PROB amb un exemple.

Abans de començar a calcular la probabilitat a Excel, hauríeu de preparar les dades per al càlcul. Heu d'introduir la data en una taula de probabilitats amb dues columnes. S'ha d'introduir un rang de valors numèrics en una columna i les probabilitats associades en una altra, tal com es mostra a continuació. La suma de totes les probabilitats de la columna B hauria de ser igual a 1 (o 100%).

Un cop introduïts els valors numèrics (venda d'entrades) i les seves probabilitats d'aconseguir-los, podeu utilitzar la funció SUMA per comprovar si la suma de totes les probabilitats suma "1" o 100%. Si el valor total de les probabilitats no és igual al 100%, la funció PROB retornarà el #NUM! error.

Suposem que volem determinar la probabilitat que la venda d'entrades estigui entre 40 i 90. A continuació, introduïu les dades del límit superior i del límit inferior al full tal com es mostra a continuació. El límit inferior s'estableix en 40 i el límit superior en 90.

Per calcular la probabilitat per a l'interval donat, introduïu la fórmula següent a la cel·la B14:

=PROB(A3:A9;B3:B9;B12;B13)

On A3:A9 és el rang d'esdeveniments (venda d'entrades) en valors numèrics, B3:B9 conté la possibilitat d'obtenir la quantitat de vendes corresponent de la columna A, B12 és el límit inferior i B13 és el límit superior. Com a resultat, la fórmula retorna el valor de probabilitat de "0,39" a la cel·la B14.

A continuació, feu clic a la icona "%" al grup Número de la pestanya "Inici", tal com es mostra a continuació. I obtindràs un '39%', que és la probabilitat de vendre les entrades entre el 40 i el 90.

Càlcul de la probabilitat sense límit superior

Si no s'especifica l'argument límit superior (últim), la funció PROB retorna la probabilitat igual al valor de límit_inferior.

A l'exemple següent, l'argument del límit superior (últim) s'omet a la fórmula, la fórmula retorna "0,12" a la cel·la B14. El resultat és igual a 'B5' a la taula.

Quan el convertim en percentatge, obtindrem un "12%".

Exemple 2: Probabilitats de daus

Vegem com calcular la probabilitat amb un exemple una mica més complex. Suposem que tens dos daus i vols trobar la probabilitat de la suma per tirar dos daus.

La taula següent mostra la probabilitat que cada dau caigui en un valor determinat en una tirada específica:

Quan tireu dos daus, obtindreu la suma de nombres entre 2 i 12. Els números en vermell són la suma de dos números de daus. El valor de C3 és igual a la suma de C2 i B3, C4=C2+B4, etc.

La probabilitat d'aconseguir 2 només és possible quan obtenim 1 als dos daus (1+1), per tant, atzar = 1. Ara, hem de calcular les possibilitats de tirar utilitzant la funció COUNTIF.

Hem de crear una altra taula amb la suma de tirades en una columna i les seves possibilitats d'obtenir aquest nombre en una altra columna. Hem d'introduir la fórmula de probabilitat de tirada a continuació a la cel·la C11:

=COMPTARSI($C$3:$H$8,B11)

La funció COUNTIF compta el nombre d'oportunitats per al nombre total de tirada. Aquí, l'interval es dóna $C$3:$H$8 i el criteri és B11. L'interval es converteix en una referència absoluta perquè no s'ajusti quan copiem la fórmula.

A continuació, copieu la fórmula de C11 a altres cel·les arrossegant-la cap avall a la cel·la C21.

Ara, hem de calcular les probabilitats individuals de la suma de nombres que apareixen als rotlles. Per fer-ho, hem de dividir el valor de cada oportunitat pel valor total de les possibilitats, que és 36 (6 x 6 = 36 tirades possibles). Utilitzeu la fórmula següent per trobar probabilitats individuals:

=B11/36

A continuació, copieu la fórmula a la resta de cel·les.

Com podeu veure, 7 té la probabilitat més alta en tirades.

Ara, suposem que voleu trobar la probabilitat d'obtenir tirades superiors a 9. Podeu utilitzar la funció PROB següent per fer-ho:

=PROB(B11:B21;D11:D21;10;12)

Aquí, B11:B21 és l'interval d'esdeveniments, D11:D21 és les probabilitats associades, 10 és el límit inferior i 12 és el límit superior. La funció retorna "0,17" a la cel·la G14.

Com podeu veure, tenim una probabilitat de "0,17" o "17%" que dos daus caiguin sobre la suma de tirades superiors a 9.

Càlcul de probabilitat sense la funció PROB a Excel (exemple 3)

També podeu calcular la probabilitat sense la funció PROB utilitzant només un càlcul aritmètic senzill.

En general, podeu trobar la probabilitat d'ocurrència d'un esdeveniment mitjançant aquesta fórmula:

P(E) = n(E)/n(S)

On,

  • n(E) = el nombre d'ocurrències d'un esdeveniment.
  • n(S) = Nombre total de possibles resultats.

Per exemple, suposem que teniu dues bosses plenes de boles: "Bossa A" i "Bossa B". La bossa A té 5 boles verdes, 3 boles blanques, 8 boles vermelles i 4 boles grogues. La bossa B té 3 boles verdes, 2 boles blanques, 6 boles vermelles i 4 boles grogues.

Ara, quina és la probabilitat que dues persones escullen 1 bola verda de la bossa A i 1 bola vermella de la bossa B simultàniament? A continuació es mostra com el calculeu:

Per trobar la probabilitat de recollir una bola verda de la "bossa A", utilitzeu aquesta fórmula:

=B2/20

On B2 és el nombre de boles vermelles (5) dividit pel nombre total de boles (20). A continuació, copieu la fórmula a altres cel·les. Ara, tens probabilitats individuals per recollir cada bola de color de la bossa A.

Utilitzeu la fórmula següent per trobar les probabilitats individuals de les boles a la bossa B:

=F2/15

Aquí, la probabilitat es converteix en percentatges.

Probabilitat de recollir una bola verda de la bossa A i una bola vermella de la bossa B juntes:

=(probabilitat de recollir una bola verda de la bossa A) x (probabilitat d'agafar una bola vermella de la bossa B)
=C2*G3

Com podeu veure, la probabilitat de recollir una bola verda de la bossa A i una bola vermella de la bossa B simultàniament és del 3,3%.

Això és.